Special Pythagorean triplet
Author: Gerhard R
https://projecteuler.net/problem=9
A Pythagorean triplet is a set of three natural numbers, a < b < c, for which,
a^2 + b^2 = c^2
For example, 3^2 + 4^2 = 9 + 16 = 25 = 5^2.
There exists exactly one Pythagorean triplet for which a + b + c = 1000. Find the product abc.
Source code: prob009-gerdr-feeds.pl
use v6; constant $N = 1000; my $result; 1..Int((1 - sqrt(0.5)) * $N) \ # compute numerator and denominator of closed expression for b ==> map -> $a { [ $a, $N * ($N - 2 * $a), 2 * ($N - $a) ] } \ # check if closed expression yields an integer ==> grep -> [ $a, $u, $v ] { $u %% $v } \ # compute b and c ==> map -> [ $a, $u, $v ] { my $b = $u div $v; [ $a, $b, $N - $a - $b ] } \ # compute product ==> map -> @triple { [*] @triple } \ # ... to give the result. # XXX Rakudo feed operator wraps results in an extra sequence, thus .[0] ==> { .[0].say }();