# P33 - Determine whether two positive integer numbers are coprime.

*Author: Philip Potter*

# Specification

P33 (*) Determine whether two positive integer numbers are coprime. Two numbers are coprime if their greatest common divisor equals 1.

# Example

> say coprime(35,64) 1

Source code: P33-rhebus.pl

use v6; # This is from P32-rhebus.pl sub gcds (Int $a, Int $b) { return ($a, $b, *%* ... 0)[*-2]; } sub coprime (Int $a, Int $b) { gcds($a,$b) == 1 } say coprime(35,64); # Another option is to make coprime an operator: # (theoretically 'our' is unnecessary but rakudo needs it our sub infix:<coprime> (Int $a, Int $b) { gcds($a,$b) == 1 } # All adjacent fibonacci pairs are coprime. # We can test a number of fibonacci pairs at once # with the hyper operator »coprime« my @fib = (1,2,3,5,8,13,21,34,55); say $_ for @fib[0..^+@fib-1] »coprime« @fib[1..^+@fib]; # And here's another famous series: my @pow = (1,2,4,{$_*2} ... 4096); say $_ for @pow[0..^+@pow-1] »coprime« @pow[1..^+@pow];